"Pervasive NO_x" in the Troposphere

Robert Chatfield, NASA (Ames Res. Ctr., chatfield@clio.arc.nasa.gov) GMI Science Team

 NO_y / NO_x relationships in the GMI simulations:

Where does true remote-atmosphere NO_x come from and

what determines the lowest simulated levels?

Import: Tropospheric O_3 production (and OH levels) are most sensitive

to changes in NOx at low (1-50 ppt) levels; PDF of NO_x is important

- (1) Observed vs. modeled HNO_3/NO_x and PAN/NO_x observations about tropospheric "age of air"
- (2) NO_x from aircraft: one day's flights: ignoring diel variation equivalent to huge horizontal misplacement

Obs Regions

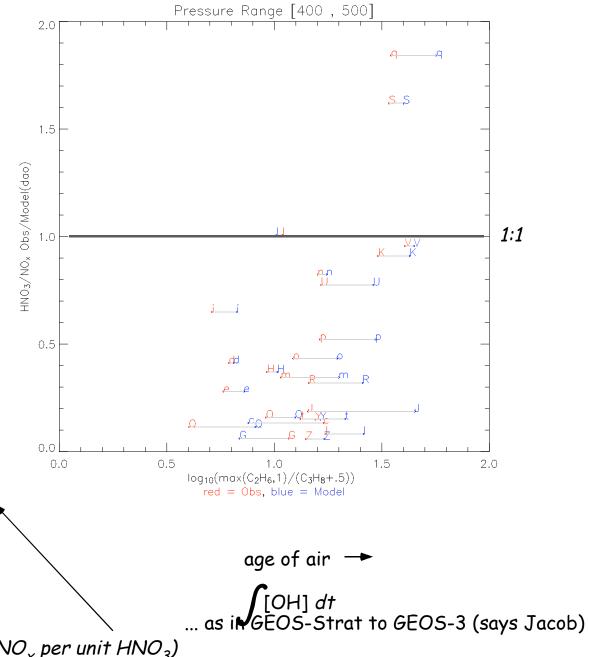
B Alaska*ABLE-3A C Calif*CITE-2 D Calif-Coast*CITE-1B E Canary-Islands*POLINAT-2 F Central-US*SUCCESS G China-Coast+PEM-West-A H Ching-Coast*PEM-West-B I China-Coast+TRACE-P J Christmas-Island*PEM-Tropics-A K Christmas—Island*PEM—Tropics—B
L E—Atlantic*POLINAT—2 M E-Brazil*ABLE-2A N E-Brazil*ABLE-2B O E-Brazil+TRACE-A
P E-Brazil-Coast+TRACE-A Q EAtlantic+SONEX R Easter-Island+PEM-Tropics-A S Easter—Island*PEM—Tropics—B
T Europe*POLINAT—2
U Fiji*PEM—Tropics—A
V Fiji*PEM—Tropics—B W Howoii+CITE-1B X Hawaii*PEM—Tropics—A Y Hawaii*PEM—Tropics—B Z Hawaii+PEM-West-A a Ireland*POLINAT-2 b Ireland*SONEX c Japan*PEM-West-A d Japan*PEM-West-B e Japan*TRACE-P f Labrador+ABLE-3B g Natal+CITE-3 h New-Mexico+ELCHEM i Newfoundland+SONEX j Ontario+ABLE-3B k Pacific*CITE-2

I Philippine-Sea*PEM-West-A

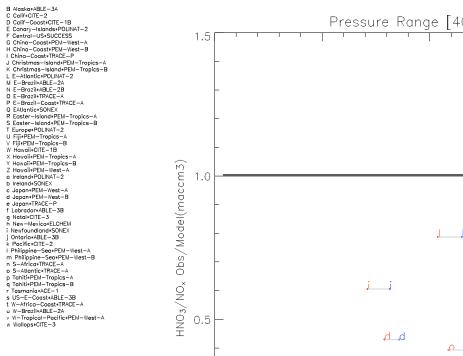
m Philippine-Sea*PEM-West-B

n S-Africa*TRACE-A o S-Atlantic*TRACE-A p Tahiti*PEM-Tropics-A q Tahiti*PEM-Tropics-B r Tasmania*ACE-1 s US-E-Coast*ABLE-3B t W-Africa-Coast*TRACE-A u W-Brazil*ABLE-2A v W-Tropical-Pacific*PEM-West-A

w Wallops*CITE-3

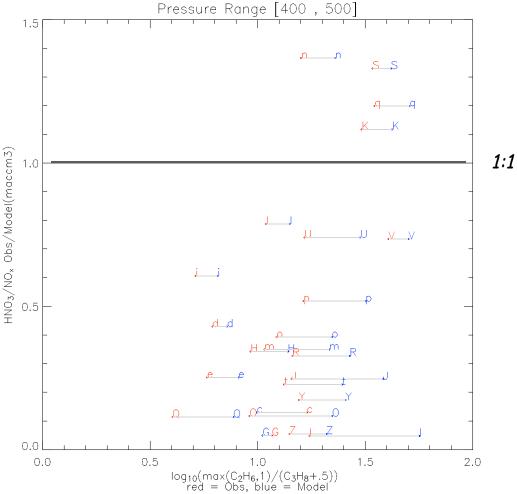

 $[HNO_3]_{obs}/[NO_x]_{obs}$ [HNO₃]_{mod}/[NO_x]_{mod}

Note:

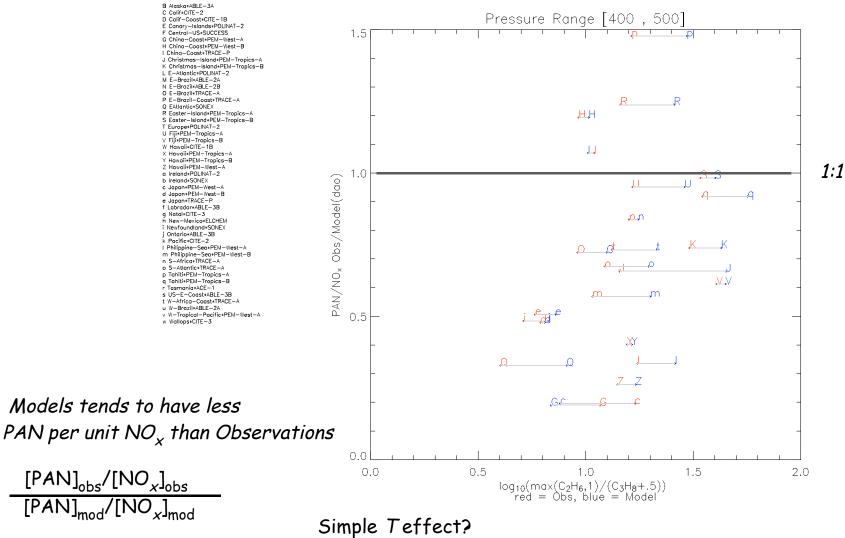

 Models tends to have more HNO_3 per unit NO_x than Observations

True for all meteorol, datasets

Obs tend to have lower "age"



(or, less NO_x per unit HNO_3)



Note:

· MACCM3 seems to have more spread in age than DAO (GEOS-STRAT)

PAN also shows similar

... as in GEOS-Strat to GEOS-3 (says Jacob)

Overdisperse Sources of NO_x

Strong diel pattern of aircraft emissions over the US suggests that repeated "pulses" of NOx move away from N. America.

- (1) Too much modeled NOx or too little NOy in the HNO₃/NO_x and PAN/NO_x ratios
 tropospheric "age of air" is better in DAO compared to MACCM3, GISS
- (2) NO_x from aircraft: one day's flights: 7:1 diel variation over U.S. We would not tolerate inaccuracies of this sort f